SI Vault
 
BOATING TODAY AND TOMORROW
Ezra Bowen
August 20, 1956
In the composite drawing above, SPORTS ILLUSTRATED is looking at the boat of the future. The boat itself is a Bell Boy plastic runabout, convertible into a fishing craft or family cruiser. The metal vanes are hydrofoils, made by Atlantic Hydrofin Corp., which hike the hull out of the water, increasing its speed by 50%. The engine is a futuristic water jet outboard. Turn page for more on plastic boats and drawings of the outboards of the future
Decrease font Decrease font
Enlarge font Enlarge font
August 20, 1956

Boating Today And Tomorrow

View CoverRead All Articles View This Issue

In the composite drawing above, SPORTS ILLUSTRATED is looking at the boat of the future. The boat itself is a Bell Boy plastic runabout, convertible into a fishing craft or family cruiser. The metal vanes are hydrofoils, made by Atlantic Hydrofin Corp., which hike the hull out of the water, increasing its speed by 50%. The engine is a futuristic water jet outboard. Turn page for more on plastic boats and drawings of the outboards of the future

BUILDING BOOM FOR FIBER GLASS

The brightly colored boats at right and on the following pages are doing more to change the yacht-building industry than anything since the introduction of the gasoline engine. Every one of the models shown—each selected as representative of the types that have taken over 15% of the U.S. boating market in 10 short years—is made of fiber glass-reinforced plastic, probably the most promising material ever conceived for the building of small boats.

The basic components are fiber glass cloth, or matting, and a gooey plastic called polyester resin which, when combined, will harden into a compound that is lighter than aluminum, tougher than steel and easy for a skilled worker to set into a mold of almost any imaginable shape. Hull curves like those on the Lone Star Meteor (see page 67), which would have been difficult if not impossible with wood, can be turned out in fiber glass plastic in a matter of minutes. Hull strength is barely believable. A small plastic wherry the Bellingham Shipyards Co. left in the water all winter, banging against tidal rocks, was pulled out whole and sound in the spring. Besides these impressive virtues, a boat made from fiber glass and polyester will not do any of the following things that all steel or wooden boats must do eventually: rot, corrode, rust, dry out, give way to marine borers like teredos, absorb any amount of water, or just generally get old from exposure to weather. Furthermore, unlike a wooden boat, a fiber glass plastic boat need not be soaked every spring until the seams close. Nor need it be caulked or extensively painted.

Polyester, which was born out of World War II as a shatter-proof liner for self-sealing airplane gas tanks, made its yachting debut in 1946. That year the Winner Manufacturing Company of West Trenton, N.J. introduced the first plastic boat ever shown at the New York Boat Show, a 10-foot dinghy made from polyester reinforced by sisal fibers. It was not terribly successful. After a few months in the water the sisal, even though surrounded by protective resin, absorbed enough moisture to start a vegetable rot. Besides, people were used to wooden boats and plastic revolted their sense of tradition.

Then two research developments sent the industry on its way. Owens-Corning Fiberglas Corporation marketed the first fiber glass matting, a rot-proof pad of random fibers which provided the structural thickness Winner had tried to get from sisal. At the same time Pittsburgh Plate Glass came out with a polyester that set at room temperatures under atmospheric pressure, thus doing away with the expensive metal molds the early experimental boats had required.

With these ingredients in hand almost anybody could make a plastic boat, and almost everybody did. Hundreds of one-man companies popped up around the country, making molded boats out of matting, or covering wooden boats with a layer or two of cloth. A lot of the boats they turned out were incredibly bad. Some of them were so poorly designed and had so little glass reinforcing that the hull flexed in and out like the sides of a cracker tin. Some builders tried to strengthen their hulls by extra laminations, but laminated one weak spot right on top of another. Others built boats with inadequate flotation compartments. Fiber glass plastic has a density of 1.65, and a swamped boat sinks like a rock unless it has plenty of styrofoam or wood built into it.

None of this did anything to promote fiber glass. Nor did the trumpetings of overenthusiastic promoters who claimed their material would not burn (it will), needed no paint (impregnated colors fade in the sun and all boats can use a good coat of anti-fouling paint to keep off the barnacles), or that any amateur could make a boat from it (an all-plastic hull is a job for real professionals). That was the situation as late as 1950, when the total U.S. market was less than 5,000 boats and only the five biggest companies turned out more than 200 boats apiece.

Gradually, however, the inherent excellence of the product provided its own leverage to force the market. In 1953, 8,000 solid plastic hulls were sold, with enough additional cloth and plastic for do-it-your-selfers to cover twice that many wooden boats. The substandard builders slowly began to die off, and the reputable ones learned to dress up their boats with enough mahogany to satisfy the staunchest traditionalists.

In 1954 fiber glass arrived. Sixteen thousand boats were built and bought. In 1955, 30,000 boats. By December of this year, 12 months' sales will have reached 40,000, with an additional existing total of 200,000 wooden boats with fiber glass skins.

Continue Story
1 2 3